

## CURRENT TOPICS IN **MEMBRANES**

Membranes in Pulmonary Vascular Disease



Edited by

Alahidal University
Faculty of Science

## PATRICK BELVITCH

Sung Manghebuk Library and information Dission

Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States

## STEVEN DUDEK

Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States





## **CONTENTS**

| Contributors<br>Preface |                                    |                                                                                                                                                                                         |          |
|-------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1.                      | <b>E</b> n                         | phingolipids Signaling in Lamellipodia Formation and shancement of Endothelial Barrier Function nfeng Fu, Mark Shaaya, Anantha Harijith, Jeffrey R. Jacobson, and Viswanathan Natarajan | 1        |
|                         | 1.<br>2.<br>3.                     | Introduction Dynamics of Lamellipodia Modulation of Lung Endothelial Barrier Function by Inflammatory and Protective Agents                                                             | 2 4      |
|                         | <ol> <li>4.</li> <li>5.</li> </ol> | Mechanisms of Lamellipodia Formation and Endothelial Barrier<br>Enhancement<br>Reactive Oxygen Species, Lamellipodia Formation, and Endothelial Barrier                                 | 9        |
|                         | 6.                                 | Enhancement Oxidized Phospholipids, Lamellipodia Formation, and Endothelial Barrier Enhancement                                                                                         | 17<br>19 |
|                         |                                    | Simvastatin Activation of S1P1 in Endothelial Barrier Enhancement<br>Conclusions and Future Directions                                                                                  | 20<br>21 |
|                         |                                    | knowledgments<br>ferences                                                                                                                                                               | 22<br>22 |
| 2.                      | fo                                 | ne Pulmonary Endothelial Glycocalyx in ARDS: A Critical Role r Heparan Sulfate ells B. LaRivière and Eric P. Schmidt                                                                    | 33       |
|                         | 1.                                 | Emerging Understanding and Historical Underappreciation of Endothelial Glycocalyx Structure and Function                                                                                | 34       |
|                         | 2.                                 | Polysaccharide Structure of the Endothelial Glycocalyx: A Focus on<br>Heparan Sulfate                                                                                                   | 37       |
|                         | 3.                                 | Pulmonary Endothelial Glycocalyx Heparan Sulfate Is Essential for Lung Homeostasis Este of Glycocalyx Heparan Sulfate During Special Indused APDS Operat and                            | 39       |
|                         | 4.                                 | Fate of Glycocalyx Heparan Sulfate During Sepsis-Induced ARDS Onset and Resolution                                                                                                      | 41       |
|                         | 5.                                 | Multisystemic Consequences of Glycocalyx Degradation                                                                                                                                    | 43       |

|    | <b>6.</b> Unanswered Questions: The Endothelial Glycocalyx in Direct vs. Indirect Lung Injury | 45  |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------|-----|--|--|--|--|
|    | 7. Summary                                                                                    | 47  |  |  |  |  |
|    | References                                                                                    | 47  |  |  |  |  |
| 3. | Cholesterol Regulation of Pulmonary Endothelial Calcium                                       |     |  |  |  |  |
|    | Homeostasis                                                                                   | 53  |  |  |  |  |
|    | Bojun Zhang, Michael L. Paffett, Jay S. Naik, Nikki L. Jernigan,                              |     |  |  |  |  |
|    | Benjimen R. Walker, and Thomas C. Resta                                                       |     |  |  |  |  |
|    | 1. Introduction                                                                               | 55  |  |  |  |  |
|    | 2. Endothelial Ca <sup>2+</sup> Channels in the Pulmonary Circulation                         | 57  |  |  |  |  |
|    | 3. Hypoxic Regulation of Pulmonary Endothelial Ca <sup>2+</sup> Entry                         | 63  |  |  |  |  |
|    | 4. Role of Membrane Cholesterol in Regulating Endothelial Ca <sup>2+</sup> Entry in           |     |  |  |  |  |
|    | CH-Induced PH                                                                                 | 67  |  |  |  |  |
|    | 5. Potential Mechanisms of Diminished Endothelial Membrane Cholesterol                        |     |  |  |  |  |
|    | by CH                                                                                         | 76  |  |  |  |  |
|    | 6. Summary and Conclusions                                                                    | 78  |  |  |  |  |
|    | References                                                                                    | 79  |  |  |  |  |
| 4. | Endothelial Protrusions in Junctional Integrity and Barrier Functio                           |     |  |  |  |  |
|    | Natascha G. Alves, Zeinab Y. Motawe, Sarah Y. Yuan, and Jerome W. Breslin                     | า   |  |  |  |  |
|    | 1. Introduction                                                                               | 94  |  |  |  |  |
|    | 2. Determinants of Endothelial Barrier Function                                               | 95  |  |  |  |  |
|    | 3. Methods to Study Endothelial Barrier Function                                              | 98  |  |  |  |  |
|    | 4. Microvascular Hyperpermeability in Injury or Disease Conditions                            | 106 |  |  |  |  |
|    | 5. Evidence of a Role for Local Lamellipodia in the Control of Endothelial Barri              |     |  |  |  |  |
|    | Function                                                                                      | 118 |  |  |  |  |
|    | 6. Conclusions                                                                                | 126 |  |  |  |  |
|    | Acknowledgments D. favorage                                                                   | 126 |  |  |  |  |
|    | References                                                                                    | 126 |  |  |  |  |
| 5. | Cortical Actin Dynamics in Endothelial Permeability                                           | 141 |  |  |  |  |
|    | Patrick Belvitch, Yu Maw Htwe, Mary E. Brown, and Steven Dudek                                |     |  |  |  |  |
|    | 1. The Pulmonary Endothelial Cell Membrane and Physiology                                     | 142 |  |  |  |  |
|    | 2. Actin Structure and Force Generation                                                       | 145 |  |  |  |  |
|    | 3. Endothelial Cell Membrane Morphology and Barrier Function                                  | 147 |  |  |  |  |
|    | 4. Membrane-Related Signaling and Barrier Function                                            | 150 |  |  |  |  |
|    | 5. Protein Regulation of Cortical Actin                                                       | 155 |  |  |  |  |

| Contents | vi   |
|----------|------|
|          | <br> |

| 6. Junctional Complexes Link Membrane to Cytoskeleton                       | 158 |
|-----------------------------------------------------------------------------|-----|
| 7. New Insights Into Cytoskeletal and Membrane Imaging                      | 163 |
| 8. Conclusion                                                               | 174 |
| Acknowledgments                                                             | 175 |
| References                                                                  | 175 |
| 6. Endothelial Extracellular Vesicles in Pulmonary Function and             |     |
| Disease                                                                     | 197 |
| Eleftheria Letsiou and Natalie Bauer                                        |     |
| 1. Introduction                                                             | 198 |
| 2. Overview of Endothelial Extracellular Vesicles (EVs)                     | 199 |
| 3. Endothelial EVs and Lung Diseases                                        | 214 |
| 4. Conclusions and Future Directions                                        | 234 |
| Acknowledgments                                                             | 243 |
| References                                                                  | 243 |
| 7. Caveolin and Endothelial NO Signaling                                    | 257 |
| Suellen D.S. Oliveira and Richard D. Minshall                               |     |
| 1. Endothelial Cell Caveolin-1 and Nitric Oxide Synthase: An Overview       | 258 |
| 2. Lung Endothelial Cell Cav-1 and eNOS-Mediated Signaling During Cell      |     |
| Quiescence vs. Activation                                                   | 261 |
| 3. Depletion of Endothelial Cell Cav-1 and eNOS Expression: Role in Acute a | and |
| Chronic Pulmonary Vascular Diseases                                         | 265 |
| 4. Endothelial Cell Phenotype Switching During Lung Inflammatory Respon     | se: |
| Role of Cav-1 Depletion and eNOS Uncoupling?                                |     |
|                                                                             | 269 |
| 5. Conclusion and Future Directions                                         | 272 |
| 5. Conclusion and Future Directions Acknowledgments References              |     |