#### VOLUME SIX HUNDRED AND FIFTEEN

# METHODS IN ENZYMOLOGY

### Biological NMR Part B

Edited by

#### A. JOSHUA WAND

Johnson Research Foundation and the Department of Biochemistry & Biophysics;

Graduate Group in Biochemistry & Molecular Biophysics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States







## **CONTENTS**

|                                              | n A. Sharp                                                                                                                                                                                                                                  |  |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.                                           | Introduction                                                                                                                                                                                                                                |  |
| 2.                                           | The Generalized NMR Order Parameter                                                                                                                                                                                                         |  |
| 3.                                           | Conformational Entropy and Protein Dynamics                                                                                                                                                                                                 |  |
| 4.                                           | J-couplings                                                                                                                                                                                                                                 |  |
| 5.                                           | Residual Dipolar Couplings                                                                                                                                                                                                                  |  |
| 6.<br>7.                                     | Protein Compressibility Molecular Tumbling                                                                                                                                                                                                  |  |
| 7.<br>8.                                     | Water Dynamics                                                                                                                                                                                                                              |  |
|                                              | knowledgment                                                                                                                                                                                                                                |  |
|                                              | ferences                                                                                                                                                                                                                                    |  |
| Ka                                           | an Fuglestad, Bryan S. Marques, Christine Jorge, Nicole E. Kerstetter, thleen G. Valentine, and A. Joshua Wand                                                                                                                              |  |
| Ka<br>1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7. | Introduction Sample Composition Considerations Spectroscopic Considerations Method for Screening RM Conditions Method for Preparation of RM Solutions in Propane or Ethane Benchmarking Encapsulation Conclusions and Outlook               |  |
| 1. 2. 3. 4. 5. 6. 7. Acc                     | Introduction Sample Composition Considerations Spectroscopic Considerations Method for Screening RM Conditions Method for Preparation of RM Solutions in Propane or Ethane Benchmarking Encapsulation                                       |  |
| 1. 2. 3. 4. 5. 6. 7. Acc Re Ch an            | Introduction Sample Composition Considerations Spectroscopic Considerations Method for Screening RM Conditions Method for Preparation of RM Solutions in Propane or Ethane Benchmarking Encapsulation Conclusions and Outlook knowledgments |  |

**vi** Contents

|    | 3.   | Preparation of Protein Encapsulated RM Samples                                                                              | 85  |
|----|------|-----------------------------------------------------------------------------------------------------------------------------|-----|
|    | 4.   | NMR Spectroscopy and Experimental Setup                                                                                     | 88  |
|    | 5.   | Data Collection and Analysis                                                                                                | 94  |
|    | 6.   | Conclusions                                                                                                                 | 98  |
|    | Ack  | nowledgments                                                                                                                | 98  |
|    | Refe | erences                                                                                                                     | 99  |
| 4. | Des  | derstanding Protein Function Through an Ensemble<br>scription: Characterization of Functional States by <sup>19</sup> F NMR | 103 |
|    | Chr  | istopher Di Pietrantonio, Aditya Pandey, Jerome Gould, Advait Hasabnis,                                                     |     |
|    | and  | Robert Scott Prosser                                                                                                        |     |
|    | 1.   | <sup>19</sup> F-Reporters That Can Be Biosynthetically Incorporated Into Proteins                                           | 105 |
|    | 2.   | Approaches to Chemical Tagging of Proteins by <sup>19</sup> F Reporters                                                     | 110 |
|    | 3.   | Improving Delineation of States by <sup>19</sup> F NMR                                                                      | 113 |
|    |      | Distinguishing States by Topology Measurements That Focus on Solvent                                                        |     |
|    |      | Exposure and Hydrophobicity                                                                                                 | 118 |
|    | 5.   | Relaxation Experiments and Simple Approaches to Delineating States in                                                       |     |
|    |      | Fast and Slow Exchange                                                                                                      | 120 |
|    | 6.   | Extending Resolution of States by <sup>19</sup> F NMR                                                                       | 121 |
|    | 7.   | Validating <sup>19</sup> F NMR Spectroscopy by Computational Methods                                                        | 123 |
|    | 8.   | Overview                                                                                                                    | 124 |
|    | Ack  | nowledgments                                                                                                                | 124 |
|    | Refe | erences                                                                                                                     | 125 |
| 5. | Ove  | erhauser Dynamic Nuclear Polarization for the Study                                                                         |     |
|    | of I | Hydration Dynamics, Explained                                                                                               | 131 |
|    | Joh  | n M. Franck and Songi Han                                                                                                   |     |
|    | 1.   | Introduction                                                                                                                | 132 |
|    | 2.   | Motivation for Studying Hydration Water Dynamics                                                                            | 134 |
|    | 3.   | Experimental Techniques for Studying Hydration Water Dynamics                                                               | 136 |
|    | 4.   | Translational Diffusion Dynamics of Hydration Water Informs on Correlated                                                   |     |
|    |      | Properties                                                                                                                  | 140 |
|    | 5.   | Principle and Benefits of ODNP Relaxometry                                                                                  | 141 |
|    | 6.   | Mechanism of ODNP Relaxometry                                                                                               | 147 |
|    | 7.   | Experimental Protocol for ODNP Measurements                                                                                 | 156 |
|    | 8.   | Common Questions for ODNP Hydration Studies                                                                                 | 162 |
|    | 9.   | Development of the ODNP Technique                                                                                           | 164 |
|    | 10.  | Concluding Remarks                                                                                                          | 168 |
|    | Ack  | nowledgments                                                                                                                | 169 |
|    | Refe | erences                                                                                                                     | 169 |

| 6. Chemical Exchange                                    | 177                    |
|---------------------------------------------------------|------------------------|
| Arthur G. Palmer III and Hans Koss                      |                        |
| 1. Introduction                                         | 178                    |
| 2. Theory                                               | 183                    |
| 3. Experimental Techniques and Examples                 | 199                    |
| 4. Conclusion                                           | 220                    |
| Acknowledgments                                         | 221                    |
| Appendix A                                              | 221                    |
| References                                              | 227                    |
| 7. Characterization of Internal Protein Dynamics        |                        |
| Entropy by NMR Relaxation                               | 237                    |
| Matthew A. Stetz, José A. Caro, Sravya Kotaru, Xuejun N | 'ao, Bryan S. Marques, |
| Kathleen G. Valentine, and A. Joshua Wand               |                        |
| 1. Introduction                                         | 238                    |
| 2. NMR Spin Relaxation Methods                          | 239                    |
| 3. Practical Aspects of Data Collection and Analysis    | 252                    |
| 4. The Entropy Meter                                    | 271                    |
| 5. Concluding Remarks                                   | 276                    |
| Acknowledgments                                         | 277                    |
| References                                              | 277                    |
| 8. NMR Methods for Characterizing the Basic Side        | Chains of Proteins:    |
| Electrostatic Interactions, Hydrogen Bonds, an          |                        |
| Dynamics                                                | 285                    |
| Dan Nguyen, Chuanying Chen, B. Montgomery Pettiti       | , and Junji Iwahara    |
| 1. Introduction                                         | 286                    |
| 2. NMR of Lys and Arg Side Chains                       | 287                    |
| 3. Conformational Dynamics of Lys/Arg Side Chains       | 300                    |
| 4. Ion Pairs and Hydrogen Bonds Involving Lys/Arg Sid   | e Chains 312           |
| 5. Data Interpretation Facilitated by Molecular Dynamic | s Simulations 317      |
| <b>6.</b> Concluding Remarks                            | 325                    |
| Acknowledgments                                         | 325                    |
| References                                              | 325                    |
| 9. Solid-State NMR Spectroscopy of RNA                  | 333                    |
| Alexander Marchanka and Teresa Carlomagno               |                        |
| 1. Introduction                                         | 334                    |
| 2. Sample Preparation                                   | 336                    |

| 3     | 3. Resonance Assignment                                                   | 339 |
|-------|---------------------------------------------------------------------------|-----|
| 2     | 4. Restraints and Structural Calculations                                 | 352 |
| 5     | 5. Characterization of Protein–RNA Interfaces                             | 362 |
| 6     | 5. Outlook                                                                | 365 |
| È     | References                                                                | 366 |
| 10.0  | ONP-Assisted NMR Investigation of Proteins at Endogenous Levels           |     |
| į     | n Cellular Milieu                                                         | 373 |
| ١     | Whitney N. Costello, Yiling Xiao, and Kendra K. Frederick                 |     |
| 1     | . Introduction                                                            | 374 |
| 2     | 2. DNP Samples of Proteins at Endogenous Levels in Native Environments    | 376 |
| 3     | B. Purified Amyloid Samples                                               | 390 |
| 4     | I. Summary and Conclusions                                                | 401 |
| F     | Acknowledgments                                                           | 403 |
| F     | References                                                                | 403 |
| 11.1  | dentification of Unknown Metabolomics Mixture Compounds                   |     |
|       | by Combining NMR, MS, and Cheminformatics                                 | 407 |
| P     | Abigail Leggett, Cheng Wang, Da-Wei Li, Arpad Somogyi,                    |     |
| L     | ei Bruschweiler-Li, and Rafael Brüschweiler                               |     |
|       | 1. Introduction                                                           | 408 |
|       | 2. Sample Preparation                                                     | 410 |
|       | 3. NMR Experiments                                                        | 411 |
|       | 4. Analysis of NMR Spectra                                                | 412 |
|       | 5. MS Experiments                                                         | 414 |
|       | 6. Analysis of MS Spectra                                                 | 416 |
|       | 7. NMR Chemical Shift Prediction of Library Compounds                     | 416 |
|       | 8. Spin System Scoring and Molecular Structural Motif Identification of   |     |
|       | Chemical Compounds                                                        | 417 |
|       | 9. Compound Verification: Spiking With Purchased or Synthesized Candidate |     |
|       | Compounds                                                                 | 418 |
|       | 0. Conclusions and Outlook                                                | 420 |
| Α     | cknowledgments                                                            | 420 |
| R     | eferences                                                                 | 421 |
| 12. S | TD NMR as a Technique for Ligand Screening and Structural                 |     |
| S     | tudies                                                                    | 423 |
| S     | amuel Walpole, Serena Monaco, Ridvan Nepravishta, and Jesus Angulo        |     |
| 1     | . Introduction                                                            | 424 |
| 2     | . The STD NMR Experiment                                                  | 426 |

|     | 3. Ligano         | l Screening                                                     | 436 |
|-----|-------------------|-----------------------------------------------------------------|-----|
|     | 4. Ligano         | l Epitope Mapping                                               | 436 |
|     | 5. Detern         | nination of the Dissociation Constant ( $K_0$ )                 | 440 |
|     | <b>6</b> . DEEP-9 | STD NMR                                                         | 444 |
|     | <b>7.</b> Summ    | ary and Conclusions                                             | 449 |
|     | References        |                                                                 | 450 |
|     |                   | A-Based Screening Platform for Ligand–Receptor                  |     |
|     | Discover          |                                                                 | 453 |
|     | Sinem Oz          | gul, Sventja von Daake, Sumie Kakehi, Davide Sereni,            |     |
|     | Natalia De        | enissova, Carlie Hanlon, Yuanpeng Janet Huang, John K. Everett, |     |
|     | Cuifeng Y         | in, Gaetano T. Montelione, and Davide Comoletti                 |     |
|     | 1. Introdu        | uction                                                          | 454 |
|     | <b>2.</b> Overvi  | ew of Workflow                                                  | 456 |
|     | 3. The Hi         | gh-Throughput Screen                                            | 458 |
|     | <b>4.</b> Data A  | nalysis and Laboratory Information Management                   | 466 |
|     | <b>5.</b> Validat | ion of PPIs and Biophysical Characterization                    | 467 |
|     | 6. PPI ELI        | SA Results                                                      | 470 |
|     | <b>7.</b> Compa   | arison With Affinity Chromatography Methods                     | 470 |
|     | <b>8.</b> Future  | Prospects                                                       | 471 |
|     | Acknowled         | dgments                                                         | 472 |
|     | References        |                                                                 | 472 |
| 14. | Protein-          | Small Molecule Interactions by WaterLOGSY                       | 477 |
|     | Renjie Hu         | ang and Ivanhoe K.H. Leung                                      |     |
|     | 1. Introdu        | uction                                                          | 478 |
|     | <b>2.</b> The Ba  | sis of WaterLOGSY                                               | 479 |
|     | 3. Pulse S        | Sequence of WaterLOGSY                                          | 483 |
|     | <b>4.</b> Basic S | etup for Conventional WaterLOGSY Experiments                    | 487 |
|     | <b>5.</b> Screen  | ing by WaterLOGSY                                               | 490 |
|     | <b>6.</b> Bindin  | g Constant (K <sub>D</sub> ) Determination by WaterLOGSY        | 492 |
|     | 7. The Us         | e of WaterLOGSY to Measure Bound-Ligand Solvent Accessibility   | 494 |
|     | 8. Conclu         | ision                                                           | 496 |
|     | Acknowled         | dgments                                                         | 496 |
|     | References        |                                                                 | 496 |
| 15. | Applicati         | ons of Dissolution-DNP for NMR Screening                        | 501 |
|     | Yaewon K          | im and Christian Hilty                                          |     |
|     | 1. Introdu        |                                                                 | 502 |
|     | 2. Metho          | ds                                                              | 504 |

| X              | Contents |
|----------------|----------|
|                |          |
| 3. Conclusions | 523      |
| Acknowledgment | 523      |
| References     | 523      |