A student’s guide to general relativity
AUTHOR : Gray, Norman, 1964-
CALL NO : QC173.6 G778s 2019
IMPRINT : Cambridge : Cambridge University Press, c2019
This compact guide presents the key features of general relativity, to support and supplement the presentation in mainstream, more comprehensive undergraduate textbooks, or as a re-cap of essentials for graduate students pursuing more advanced studies. It helps students plot a careful path to understanding the core ideas and basics of differential geometry, as applied to general relativity, without overwhelming them. While the guide doesn’t shy away from necessary technicalities, it emphasises the essential simplicity of the main physical arguments. Presuming a familiarity with special relativity (with a brief account in an appendix), it describes how general covariance and the equivalence principle motivate Einstein’s theory of gravitation. It then introduces differential geometry and the covariant derivative as the mathematical technology which allows us to understand Einstein’s equations of general relativity. The book is supported by numerous worked exampled and problems, and important applications of general relativity are described in an appendix.
- The essential simplicity of the main physical arguments are clearly distinguished from the mathematical technicalities
- Ideally used as a supplementary text, either to navigate through a larger textbook, or to provide a complementary approach
- The book’s presentation is complementary to any general relativity textbook